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A procedure is proposed for calculating matrix heat exchanger-recuperators, and 
it is shown that in the general case it is possible to adequately tabulate the 
efficiency as a function of the length of the apparatus for limited ranges of 
the important parameters. 

Compact matrix recuperator-heat exchangers (CMR's) are widely used in refrigerator en- 
gineering [1-3]. Here we will consider one of the types of this equipment which is construct- 
ed from thin, perforated metallic plates (thickness 6, with numerous openings), between which 
there a;e spacers which are practically non-heat conducting. Narrow rectangular windows are 
cut it% the spacers such that in an assembled group a series of alternating plane-parallel 
channels (widths 2R, and 2R~) is formed, with the "cold" and "hot" gases moving countercur- 
rently to each other in adjacent channels. If the number Of channels is sufficiently large, 
then neglecting end effects, it is possible to calculate such a heat exchanger by considering 
the heat exchange in an elementary cell consisting of two adjacent half-channels (widths R, 
and Ks) separated by a heat-conducting membrane of width 2b. 

Figure IA shows a sketch of a CMR. A rectangular system of x-y coordinates is selected 
for any elementary cell. The x axis is taken in the direction of motion of the "hot" gas 
(x = 0 represents its entry into the equipment), and the y axis is taken in the transverse 
direction (with y = 0 at the center of the dividing membrane; y = R, and y = R2 are then re- 
spectively in the centers of the "hot" and the "cold" channels). In this system of coordin- 
ates the equations for the transfer of heat in the channel can be written in the form [4] 

at; a .t; a6 a,t'  ( i )  

The conditions interrelating the fluxes on both sides of the dividing membrane are of the 
form 

~k ay /ly=b \ ay v~b' \ ay /ly=b 2b " (2) 

The second equation in (2) indicates that the transfer of heat within the dividing membrane 
in the x direction is not taken into account, and as a result, the temperature distribution 
in it along the y axis is linear. The following symmetry conditions must be satisfied at the 
centers of the two channels: 

ay /Iv---R, = \-~-/Iv=-~, = O 

The initial conditions for the inlet temperatures are specified at opposite ends of the heat 
exchanger 

(o, y) = t -o, (I, y) = t:,o. 

Below use is made of the dimensionless temperatures t, and t: and the dimensionless coordin- 
ates xt, xa, yt, and Y2, defined by the following equations: 
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tl = t~o + ( t ; o -  t;o)t~, 6 = t~o + ( t l o -  60) t,, 

X : ~1 Xl : ~2 X2' 

y~ = (R~ + b - -  H)/R,, Y2 = (R2 + b + y)lR, .  

The coordinates y, and ya are shown in Fig. IA. The dimensionless statement of the problem 
for determining the functions t, and t2 can be rewritten in the form 

Otx 
OYl 

at, a~t~ at, a& 
ax~ = -~-v~' ( -  I/~) ax~ - aw~ ' 

= ( - ~ D  --,a& _ _ = _ a t ,  ~ ( t ~ -  t2,) a t  m = y,  = 1, 
Oy, Oy, 

or1 or2 0 , t  Yl Y~ O, 
Oy~ OY2 

tx (o, gO = 1, & (l~, y~) = O. 

(3) 

(4) 

It is easy to see that in the general case there are four independent dimensionless parame- 
ters, g, 8, xa, and K. On the basis of a theoretical investigation of the problem expressed 
by equations (3) and (4) which was carried out in [4] it has been shown that in order for it 
to be possible to tabulate the solution for arbitrary values of the physicochemical and geo- 
metrical quantities, it is necessary to introduce in addition to the parameters enumerated 
above also their linearly independent combinations, namely, two hydrodynamic parameters X = 
log r and Y = --log (sS) which involve the loadings with respect to the two phases, a dimen- 
sionless length of the equipment Z, and a parameter which takes into account the conductivity 
of the wall, F. Following reference [5], we will introduce for reasons of clarity the rec- 
tangular planar system of coordinates X--Y, as shown in Fig. lB. The families of functions 
I(P, Z) and E(P, Z), respectively, will be considered at the points in this plane, depending 
upon whether they fall to the right (X ~ 0) or to the left (X < 0) of the midpoint. This is 
connected with the fact that when Z + ~, then I + 1 if X > 0, while on the other hand, E + 1 
if X < 0. The values of the parameters Z and P in the le[t and right havles of the X--Y plane 
are defined differently [4]: 

P+= (I + I/8~)]/~, Z+ =/i/(I + I/aft)' for X/>O, 

P--(i +~)VV, Z_= &/(1 +86)2 ~) X<O. 
(5) 

It should be noted that the dimensionless length Z was introduced earlier in a similar way in 
the investigation of two-phase film-type heat exchangers [5]. It is easy to show that for 
any values of the parameters X and Y, the solution of the problem given by Eqs. (3) and (4) 
possesses the property of "symmetry" [4]: 

I(X, Y, P+, Z+)=E(--X, - -Y ,  P_, Z_), if P+=P_,  Z+=Z_, 

which makes it possible to reduce by a factor of two the quantity of information needed for 
the calculation. As a result, in what follows we will confine ourselves to investigating the 
solution for the right-hand half of the plane only, and the subscripts (+) on the parameters 
P and Z will be omitted. 

The problem (3)-(4) has been solved in [4] by the method of separation of variables. 
The following formula was obtained for the efficiency: 

I(X, Y'P' Z): ~ [ l--exp(--f~) ]A~--~ [ l--exp(--z'~) ] z' (6) 

where r, z are the discrete roots of the characteristic equation; Ar, B z are the correspond- 
ing coefficients which are determined by solving the system of linear algebraic equations of 
dimensionality N = Nr + Nz, where Nr, Nz are the total number of roots r and z. 

All the calculations were carried out for N r = N z = 20. Checking of the calculations 
for N r = 30, 40, and 60 led to practically no change in the results for the length being con- 
sidered. By formally investigating the forms of the problem (3)-(4) for ~ = ~ and ~ = 0, it 
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Fig. i. Sketch of heat exchanger (A) 
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[a) perforated plate; c) perforation; d) spacer], 
and plane of the hydrodynamic variables (B) [the dashed curve represents the relation- 
ship X~(Y) ]. 

Fig. 2. Efficiency as a function of the length for infinite conductivity of the wall; 
a) Y = 1.25; b) 0.75; c) 0.25; d) --0.25; e) -0.75; f) --1.25; i) X = 0; 2) 0.i; 3) 0.2; 
4) 0.3; 5) 0.4; 6) 0.5; 7) 0.6. 

was possible to obtain two limiting solutions. In the first case (~ = ~), as can be easily 
seen from the boundary conditions (4), the equality t, s = ta s is satisfied everywhere within 
the equipment, and as a result, the temperature distributions in the channels are the same 
as in the problem of two-phase heat transfer with an infinitely thin dividing membrane (b = 
0). The solution of the latter problem was found earlier by numerical means [5] using the 
method of iteration, where the efficiency as a function of the dimensionless length, or 
Ipr(X , Y, Z), was calculated at a number of discrete points in the X--Y plane. Since this 
solution is of considerable importance in itself, and also bearing in mind its importance for 
the discussion below, Ipr(Z) was also calculated in the present work by the method of separa- 
tion of variables, i.e., by Eq. (6). It should be noted that compared to the numerical meth- 
od this latter method is almost instantaneous and is also more accurate. The results are 
shown in Fig. 2. In the general case Ipr(Z) depends on both the parameters X and Y. It can 
easily be seen that at any level (i.e., at a fixed value of Y) the function Ipr(Z) increases 
with increase of the parameter X and tends towards the limiting curve ipr( ~, Y, Z). In prac- 
tice the approximate equation 

l p r ( X ,  y, Z)~r,(OO , Y, Z) (7) 

can be used starting at some value X = X~, the value of which depends on the level and also 
on the degree of approximation towards the limit. Subsequently, the equations similar to (7) 
will be regarded as accurate if the relative error between the functions expressed by the 
left-hand and right-hand parts does not exceed 2% for any value of Z considered. The curve 
X~(Y) is shown by the dashed line in Fig. lB. Thus, everywhere in the X--Y plane the curve 
X~(Y) for the efficiency Ipr(Z) depends only on the parameter Y. On the other hand, at large 
and small values of Y this function depends practically only on X, and is given by the corres- 
ponding limiting relationship: 

lpr (X, Y, Z) ~,, lpr (X, __ oo, Z). (8)  
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Fig. 3. Efficiencies as a function of length at the level 
Y = 1.25 (A) and Y = --1.25 (B): a, d) X = 0.i; b, e) X = 
0.2; c, f) X = 0.4; i) log P =--0.6; 2) log P = --0.4; 3) log 
P =--0.2; 4) log P = 0; 5) log P = 0.2; 6) log P = 0.4; 7) 
log P = 0.6; 8) log P = 0.8; 9) log P = 1.0. 

The calculations showed that to the accuracy assumed above, Eq. (8) is satisfied in the zones 
Y > 1.25 and Y < --1.25, respectively. The physical reason for this behavior of the function 
Ip~(Z) was established in [5]. The solution for ~ = ~ corresponds to the case in which the 
thermal resistance of the wall is equal to zero, and its conductivity is infinite. 

In the other limiting case (~ = 0), the equations tt = tts, t2 = t2s are satisfied almost 
everywhere within the CMR. By integrating the transfer Eq. (3) with respect to Yl and y2 from 
zero to unity, a system of ordinary first-order equations 

Ox~ t~ t~ ~t~, 

is obtained instead of the partial differential equations, where the second relationship re- 
presents the heat-balance condition. As a result of solving this system of equations with 
the boundary conditions tt(0) = i, the following analytical expression is obtained for the 
efficiency: 

I o (X, P?Z) = {1 - -  e x p  [ - -  (1 - -  l / e ) / ~ x ] } / { l  - -  e x p  [ - -  (1 - -  1/8) l l x ] /8}  = 

= {1 - -  e x p  [ - -  (1 - -  I / e )  P2Z]}/{1 - -  e x p  [ - -  (1 - -  1/8) P~Z]Ie}. ( 9 )  

If we restrict ourselves to a 2% accuracy, simple calculations show that the approximation 

Io (X, P~Z) "." Io (oo, P~Z) = 1 - -  exp (-- P~Z) ( 1 0 )  

is satisfied when X > 0.6. If it is taken into account that lo(P~Z) depends only on X, then 
Eq. (i0) means that for ~ = 0 and with the accuracy assumed above, the vertical line X = 0.6 
can serve as the boundary of the zone in which Io(P2Z) changes. From its physical meaning, 
Eq. (9) corresponds to the case in which the thermal resistance of both channels in the trans- 
verse direction can be neglected compared with the corresponding resistance of the membrane. 
In other words, the overall conductivity of the channel tends to infinity. 

By using the limiting solutions Ipr and Io it is possible to look into the physical sig- 
nificance of the parameter P which is defined by Eq. (5). In reality, when the thermal re- 
sistance of the separating membrane can be neglected the characteristic length of the CMR 
(i.e., the length at which I m i) is of the order of ~I = (i + I/~B) 2 (Fig. 2). If it is 
possible to ignore the thermal resistance of the channel, then 11 = i/x, as follows from Eq. 
(9). Since the parameter p2 is equal to the ratio of these characteristic lengths, then 
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qualitatively the heat transfer in the CMR can be regarded as the result of two competing 
processes. For large values of P the limiting process is heat transfer in the channels, and 
in the case I -- Ipr; at small values of P the limiting process is the transfer of heat through 
the dividing wall, and here I = Io. Consequently, the physical significance of the parameter 
P is a relative conductivity of the dividing membrane, the range of variation of which can be 
taken as finite everywhere within the X--Y plane. 

The solution can be represented graphically in terms of the selected variables X, Y, and 
P. In fact, the curves belonging to the family of functions I(P, Z), where P is taken as a 
parameter, fall in the general case between two limiting relationships: Ipr(Z) and Io(P2Z) 
(for sufficiently small values of P). Figure 3A shows the results of calculations of the ef- 
ficiencies at the level Y = 1.25 for various values of X. The parameter log P assumes a num- 
ber of discrete values in the range [-0.6, i] in steps of 0.2. Outside of this range, the 
approximation (7) is valid everywhere with the accuracy assumed above (2%) when the inequality 
log P > 1 is satisfied, while the solution coincides with the analytical Eq. (9) when log P <__ 
-0.6. 

If the limiting solutions Ipr and Io and the positions of the boundary curves X~(Y) are 
analyzed at large and small values of the conductivity, then, bearing in mind the monotonic 
nature of the effect of P, the conclusion is reached that in the general case it is sufficient 
in calculating I(P, Z) to restrict our attention to the finite region of the X--Y plane given 
by 0 < X < 0.6, --1.25 < Y < 1.25, i.e., to the rectangle ABCD in Fig. lB. The points corres- 
ponding to this zone at which calculations have been carried out are shown by crosses in Fig. 
lB. For example, Fig. 3B shows the calculations for the points falling on the lower side (CD) 
of this rectangle. As can be seen from the graphs in Fig. 3 which were obtained for the ex- 
treme values of Y (Y = +1.25), the values of log P and the steps by which it varies can be 
taken to be the same in all the cases. The calculations showed that this same behavior was 
observed everywhere within the rectangle ABCD. The latter is very important for obtaining 
I(P, Z) at any internal point in ABCD (for any fixed value of P), since for constant values 
of the range [-0.6, i] it is possible to easily extrapolate the solutions obtained for dis- 
crete points at any values of X, Y corresponding to ABCD. If the points fall outside the 
limits of the rectangle ABCD (for example, the points E, F, J in Fig. IB), then it is suffi- 
cient to drop perpendicularly from the point to the nearest side of the rectangle ABCD. It 
is obvious that the following relationship exists between the efficiencies at the given points 
and those at the points of intersection of the perpendiculars with the sides of the rectangle 
ABCD (E', F', J' in Fig. IB)" 

I(P, Z)~I(P' ,  Z') for p=P ' ,  Z=Z',  

where P', Z' are the parameters calculated from Eq. (5) for the boundary points (E', F', J'). 

Thus, as the basis for the calculation of CMR's with selected steps along the axes of 
AX = 0.i and AY = 0.25 for arbitrary conditions, i.e., any permissible values of the paramet- 
ers X, Y, and P (-~o < X, Y, log P < + =), 77 graphs have been set up for the families of 
functions I(P, Z) tabu"lated in the ~ollowing restricted ranges of variation of these paramet- 
ers: 0 < X < 0.6, --1.25 < Y < 1.25, -0.6 < log P < i. 

It has not been possible to give all of the~graphs in the present paper. As examples, 
six of them are shown in Fig. 3. It is obvious that the quantity of information which is 
needed depends greatly on the accuracy which is required in the calculations, which is re- 
lated to the choice of the steps along the X and Y axes. Here this choice was governed by 
the requirement that the error in the calculation of the length Z should not exceed 2-4%,. 
which is acceptable for practical calculations. The calculations were carried out on a BESM-6 
computer. Subsequently, these calculations served as the basis of an "economic" procedure for 
calculating CMR's in the use of which relationships are required only for the limiting values 
of the parameters X = +~, Y = +=. 

NOTATION 

ci, Heat capacity at constant pressure, J/deg; ui mass-average velocity, m/sec; I = 1 -- 
~II, efficiency, or dimensionless heat flux for "hot" channel; Z = t21, dimensionless heat 
flux for "cold" channel; 5, length of heat exchanger, m; li = ~/RiPei, dimensionless length 
of CMR; t'i, temperature, ~ t'io, constant temperature at the entry of the gas into the heat 

i 
exchanger: ~= ~t~dy~, dimensionless temperatures; Pi, density, kg/m3; B 2 = RzPel/R~Pe2, di- 

0 
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mensionless parameter; e = R2p2uac2/R~plu~cl, dimensionless parameter; ~ = (lT/l,)(R,/2b) , 
dimensionless parameter; Pe i = PiuiciRi/li, thermal P~clet number. Subscripts: s, surface 
of separating membrane; i = i, 2, "hot" and "cold" channels, respectively; l, outlet of gas; 
T, separating membrane. 

2. 

3. 

4. 

. 
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DETERMINING THE THERMOPHYSICAL CHARACTERISTICS OF 

MATERIALS ON A MODEL OF A SEMIINFINITE BODY WITH 

HEAT SUPPLIED BY MEANS OF A THIN ANNULAR HEATER 

A. G. Shashkov, V. P. Kozlov, 
and V. N. Lipovtsev 

UDC 536.2.083 

Methods of complex calculation of the thermophysical characteristics of mater- 
ials without destroying their integrity are proposed, on the basis of a model 
of a semiinfinite body on heating with a rectangular heat pulse through a spe- 
cified annular region. 

The problem posed here is the complex determination of the thermophysical characteristics 
of materials (without loss of their integrity) using a model of a semiinfimite (in thermal 
terms) body with a pulsed heat supply to its surface. A short heat pulse (of rectangular 
form) acts in a limited annular region, and the excess temperature Ti(r, z, ~) is measured at 
a point coinciding with the center of the annular heat source. 

To solve this problem the two-dimensional nonsteady temperature field Ti(r, z, T) in cy- 
lindrical coordinates must be determined as a function of the heat-flux density q(T) acting in 
a finite annular region R~ < r < R2, where R~ and R2 are the radii of the annular heater at 
the surface of the semiinfi~ite--body when z = 0; R2 > R~. In the regions of variation r < R~ 
and R2 < r < ~ on the surface, there is assumed to be no temperature gradient along the normal 
to the boundary of the body. The initial temperature distribution is assumed to be constant: 
To = const. The origin of the cylindrical coordinates (r = z = 0) is chosen at the center of 
the annular heater. 

The mathematical problem is formulated as a system of three differential heat-conduction 
equations of the form 

O'T~(r, z, ~) ~ 1 OTt(r, z, ~) + O~T~(r, z, ~) _ I OTi(r, z, ~) ( i = 1 ,  2, 3). (1) 
O~ r Or az~ a O~ 
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